852 research outputs found

    "Hidden” degassing from streams: estimation of the CO2 release from the thermal springs of Sperchios Basin, Greece

    Get PDF
    Areas located at plate boundaries are characterized by the presence of seismic, volcanic, and geothermal activity, as well as ore deposition. Such processes are enhanced by the circulation of hydrothermal fluids in the crust transporting volatiles from either the deep crust or the mantle to the surface. Intense geodynamic activity is also taking place in Greece giving rise to: (i) the highest seismicity in Europe, (ii) the presence of an active volcanic arc and numerous areas of anomalously high geothermal gradient, and (iii) a widespread occurrence of thermal springs. Elevated heat flow values are concentrated in Sperchios basin, an area characterised by a system of deeply rooted extensional faults and quaternary volcanic activity. This regime favoured the formation of hydrothermal systems, the surface expression of which are thermal springs with intense bubbling of CO2-rich gases. Flux measurements in the bubbling pools were made with the floating chamber method. The highest bubbling CO2 output is found in Thermopyles and Psoroneria (1 and 2 t/d, respectively). The outgoing channels of these springs have an elevated flow (>250 l/s) of gas-charged water (>15 mmol/l of CO2). Although no bubbling is noticed along the stream, the CO2 content decreases by an order of magnitude after few hundreds of metres, indicating an intense degassing from the water. Taking into account the water flow and the amount of CO2 lost to the atmosphere, the CO2 output of the outgoing channels is quantified in >10 t/d for Thermopyles and 9 t/d for Psoroneria. An estimation is also made at Ypati, Kamena Vourla, Koniavitis and Edipsos, where the mean values reach 1 t/d of CO2 for each spring. The obtained values are always higher respect to the estimated outputs from visible bubbling, suggesting that most of the degassing is “hidden”. Furthermore, the loss of CO2 from the water determines a shift in dissolved carbonate species as demonstrated by the pH increase along the channel that leads eventually to an oversaturation in carbonate minerals and therefore travertine deposition. To sum up, the total CO2 output of the study area is estimated at 30 t/d, with the major contribution deriving from the degassing along the outflow channels of the thermal springs. Such output is comparable to that of the single active volcanic systems along the South Aegean Volcanic Arc (Sousaki, Methana, Milos, Santorini, Kos and Nisyros) and highlights the importance of “hidden” degassing along CO2-oversaturated streams

    The essential oil of Thymbra capitata and its application as a biocide on stone and derived surfaces

    Get PDF
    Many chemicals used nowadays for the preservation of cultural heritage pose a risk to both human health and the environment. Thus, it is desirable to find new and eco-friendly biocides that can replace the synthetic ones. In this regard, plant essential oils represent effective alternatives to synthetic substances for the preservation of historical monuments. Thymbra capitata (syn. Thymus capitatus) is a medicinal and aromatic plant growing in the Mediterranean area and endowed with important pharmacological properties related to its essential oil. Among them, the antimicrobial ones make the T. capitata essential oil an ideal candidate for industrial applications; for instance, as biocide for the inhibition and elimination of biological patinas of cyanobacteria and green algae on historical monuments. In the present work, we studied the chemical composition of the essential oil from T. capitata growing in Malta by gas chromatography-mass spectrometry (GC/MS). The major volatile component is the phenolic monoterpene carvacrol (73.2%), which is capable of damaging the cytoplasmic membrane and to interfere both in the growth curve and in the invasive capacity, though the contribution of minor components Îł-terpinene and p-cymene cannot be disregarded. For the oil application on the stone surface, Pickering emulsions systems were prepared with an essential oil/water 1:3 mass ratio stabilized with kaolinite at 4 mass% in the presence of LaponiteÂź; this allowed to limit the fast volatility of the oil and guaranteed a better application and an easier removal from the artefacts attacked by biodeteriogens both indoor and outdoor. This formulation caused the elimination of biodeteriogens from treated surfaces without residuals or films on artworks surface, and the effect was retained up to four months

    Agriculture and Sustainability: a GIS Based Model to Appraise Incentive Policy

    Get PDF
    Agriculture is the major form of protection of local identities and sustainability and one of the most fragile Italian economic sectors, exposed to fluctuations of the financial/economic crisis. As a consequence, boosting agricultural policies should integrate conflicting objectives connected to preservation and innovation, effectiveness/efficiency, and landscape features and job opportunities. Referring to a large land area located in the central part of Sicily (Italy) the paper proposes an assessment/planning pattern aimed at providing some axiological items and a specific algorithm able to appraise each specific land parcel, generating different strategies and selecting the best format of funding allocation. The pattern combines some WebGIS tools helpful for spatial analysis and management of the big data amount coming from the Landscape Regional Plan and the cadastral vector database. The general approach integrates monetary and qualitative features, as well as land estate and landscape values within a multidimensional pattern providing the quantitative conditions for supporting qualitative and sustainable development

    Gas Geochemistry and Fractionation Processes in Florina Basin, Greece

    Get PDF
    Florina Basin is located in northern Greece, close to Mount Voras where the volcanic activity of Late Messinian age began. In the area, many CO2-rich gas emissions are present as a bubbling free-phase in groundwater (both springs and wells) and soil gases. Volcanism along with the geological and geodynamic regime of the basin, created the ideal conditions for CO2 accumulation in vertically stacked reservoirs. One of these, industrially exploited by the company Air Liquide Greece, produces 30,000 t/a of CO2. Results show that CO2 concentrations in the gases of Florina can arrive up to 99.8% and are mostly above 90%. Moreover, C-isotope composition (-2.1 to + 0.3 h vs. VPDB) indicates a mixed mantle-limestone origin for CO2, while He isotope composition (R/RA from 0.21 to 1.20) shows a prevailing crustal origin with an up to 15% mantle contribution. Helium and methane, with concentrations spanning over three orders of magnitude, show a positive correlation and a consequent high variability of He/CO2 and CH4/CO2 ratios. This variability can be attributed to the interaction of the uprising gases with groundwater that chemically fractionates them due to their different solubility. Based on the CO2, CH4 and He concentrations, gas samples collected in the basin can be divided in 3 groups: a) deep reservoir gases, b) enriched in less soluble gases and c) depleted in less soluble gases. The first group consists of gas samples collected at the Air Liquide extraction wells, which tap a 300m deep reservoir. This group can be considered as the least affected by fractionation processes due to interaction with groundwater. The gases of the second group due to their interaction with shallower unsaturated aquifers, become progressively enriched in less soluble gases (He and CH4). Finally, the third group represents residual gas phases after extensive degassing of the groundwater during its hydrological pathway

    Integrated Analysis and Tools for Land Subsidence Surveying and Monitoring: a Semi-Quantitative Approach

    Get PDF
    This paper presents an integrated approach for land subsidence monitoring using measures coming from different sensors. Eni S.p.A., the main Italian oil and gas company, constantly surveys the land with all the state of the art and innovative techniques, and a method able to integrate the results is an important and actual topic. Nowadays the world is a multi-sensor platform, and measure integration is strictly necessary. Combining the different data sources should be done in a clever way, taking advantages from the best performances of each technique. An integrated analysis allows the interpretation of simultaneous temporal series of data, coming from different sources, and try to separate subsidence contributions. With this purpose Exelis VIS in collaboration with Eni S.p.A. customize PISAV (Permanent Interferometric Scatterometer Analysis and Visualization), an ENVI extension able to capitalize on and combine all the different data collected in the surveys. In this article are presented some significant examples to show the potential of this tool in oil and gas activity: a hydrocarbon storage field where the comparison between SAR and production volumes emphasise a correlation between the two measures in few steps; and a hydrocarbon production field with the Satellite Survey Unit (S.S.U.), where SAR, CGPS, piezometers and assestimeters measure in the same area at the same time, giving the opportunity to analyse data contextually. In the integrated analysis performed with PISAV not always a mathematical rigorous study is possible, and a semi-quantitative approach is the only method for results interpretation. As a result, in the first test case strong correlation between injected hydrocarbon volume and vertical displacement were highlighted; in the second one the integrated analysis has different advantages in monitoring the land subsidence: permits a first qualitative "differentiation" of the natural and anthropic component of subsidence, and also gives more reliability and coverage to each measurement, taking advantages from the strong points of each technique

    Multi-particle excitations and spectral densities in quantum spin-systems

    Full text link
    The excitation spectrum of the 2-leg S=1/2 Heisenberg ladder is examined perturbatively. Using an optimally chosen continuous unitary transformation we expand the Hamiltonian and the Raman operator about the limit of isolated rungs leading to high order series expansions allowing to calculate spectral densities quantitatively. The 2-particle sector is examined for total momentum k=0. We show that triplet-triplet interaction gives rise to a band splitting.Comment: 2 pages, 1 figure; submitted to the proceedings of the SCES2001 conference (Physica B

    Numerical renormalization group study of the correlation functions of the antiferromagnetic spin-12\frac{1}{2} Heisenberg chain

    Get PDF
    We use the density-matrix renormalization group technique developed by White \cite{white} to calculate the spin correlation functions =(−1)lω(l,N)=(-1)^l \omega(l,N) for isotropic Heisenberg rings up to N=70N=70 sites. The correlation functions for large ll and NN are found to obey the scaling relation ω(l,N)=ω(l,∞)fXYα(l/N)\omega(l,N)=\omega(l,\infty)f_{XY}^{\alpha} (l/N) proposed by Kaplan et al. \cite{horsch} , which is used to determine ω(l,∞)\omega(l,\infty). The asymptotic correlation function ω(l,∞)\omega(l,\infty) and the magnetic structure factor S(q=π)S(q=\pi) show logarithmic corrections consistent with ω(l,∞)∌aln⁥cl/l\omega(l,\infty)\sim a\sqrt{\ln{cl}}/l, where cc is related to the cut-off dependent coupling constant geff(l0)=1/ln⁥(cl0)g_{eff}(l_0)=1/\ln(cl_0), as predicted by field theoretical treatments.Comment: Accepted in Phys. Rev. B. 4 pages of text in Latex + 5 figures in uuencoded form containing the 5 postscripts (mailed separately

    Recursion Method in Quantum Spin Dynamics: The Art of Terminating a Continued Fraction

    Get PDF
    The results obtained from applications of the recursion method to quantum many‐body dynamics can be greatly improved if an appropriate termination function is employed in the continued‐fraction representation of the corresponding relaxation function. We present a general recipe for the construction and use of such termination functions along with two applications in spin dynamics. The method can be adapted to any other problem in quantum many‐body dynamics
    • 

    corecore